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The classical theorem of Noether and Skolem asserts that any K-isomorphism 
between two simple K-subalgebras of a central simple algebra R can be extended to 
an inner automorphism of R (see [2],[5],[8]). 

The main result of this paper is to prove the following extension of the above 
theorem: if A is a semisimple k-algebra over a field and B is a separable k-algebra 
(not necessarily central over k), then the number of orbits under the action of the 
group of all inner automorphisms of B on HOmAlg(k)(A, B) is finite (Theorems 2 
and 3). 

A similar result is true for separable algebras over a henselian local ring (Theorem 
4). 

The result arises in connection with a question of one of the authors concerning 
the structure of certain artinian rings [12]. 

The simplest case (which suggested the general results) concerns the k-embeddings 
of a finite extension K of k in Mn(K) (Theorem 1). 

Results 

We assume throughout this paper that all rings have identity elements, all 
subrings contain the identity of the ring, all ring homomorphisms carry identity to 
identity and all algebras are finite-dimensional. 

The simplest case, which we consider first, is the following: 

Theorem 1. Let k C K  be a finite separable field extension. Then the number o f  
classes o f  k-algebra homomorphisms q):K~Mn(K),  with respect to conjugation 
under an inner automorphism o f  Mn(K), is finite. 

Moreover i l k  C K is a Galois extension, then any k-algebra homomorphism is con- 
jugate to a diagonal mapping x ~  diag(al(x), a2(x), .. . ,an(x)) where ai~Gal(K/k).  

Proof. Observe first that if K=k(O), then ~(0) determines the k-algebra 
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homomorphism ~. What  remains to be done is an exercise in linear algebra. Remark 
that for similar ~ 's ,  $(0) has the same rational (Frobenius) canonical form which 
is built up from companion matrices of the invariant factors of  ~(0). Since they are 
divisors of the irreducible polynomial of 0 over k, the rational form of ~(0) may 
have only a finite number  of values. If K is a Galois extension of k, then the minimal 
polynomial of 0 over k splits as a product of distinct linear factors over K, hence 
(see [7, Ch. 11, Theorem 4]) ~(0) is diagonalisable. [] 

Now let A be a semisimple k-algebra, B a separable k-algebra with center K 
and f :  A - , B  a k-algebra homomorphism. Then denote by B ( f ) = f ( A ) .  K. With 

any fEHomklg(k)(A, B) we can associate F~HOmAlg(K)(A@kK, B(f ) )  defined by 
F(a®b)= f(a)b. 

One can see that the mapping f ~  F from HomAIg(k)(A , B) to HOmAIg(K)(A ~)g K, B) 
is one-to-one and onto, hence a bijection. By a simple verification we have also: 

Lemma 1. The correspondence f ~ F defined above is compatible with the action o f  
the group G o f  all inner automorphism of  B. Moreover Gfl = Gf2 i f f  GF 1 = GF 2. 

Theorem 2. Let A be a semisimple algebra over a field k and B a simple separable 
algebra over k. Then the number o f  orbits o f  Homglg(g)(A, B) under the action o f  
the group o f  all inner automorphisms o f  B is finite. 

Proof.  Denote by K the center of  B. As K / k  is a separable extension A ®k K is 
semisimple so we can write 

A ® k K =  TI@.. .QTt 

with each T/a  simple K-algebra and we have also 

F ( A ( ~ k K ) = S l @ . . . @ S s ,  s < t  

with Si = T/as K-algebras for the T/numbered properly. 
Denote by e l, .. . ,  es the identity elements of S~, ..., Ss; it follows that they are or- 

thogonal idempotents of  B and e 1 +--. + es= 1B. Any such idempotent e; can be 
written as a sum of  orthogonal idempotents of Si and any such an idempotent is a 
sum of primitive (minimal) orthogonal idempotents of B, ei= ~.j~1,fJ, i= 1, . . . ,S 
and I= ~=~ I i. For any regular u ~ B we shall denote by iu the inner automorphism 
associated to u by iu(X)=uxu -1. 

Fix now a maximal  set of orthogonal primitive idempotents {e°,. . . ,  e ° } of B; by 
the uniqueness part of  Wedderburn's  Theorem [1, Ch. IV, Theorem 1] expressing 

0 B in two ways as a matrix algebra over {e °, ..., en } or over {~} je i  there is a regular 
element u ~ B such that the two sets of primitive idempotents are conjugated under 
u. Then iu(fj) o o = ek(j), SO that ~i = iu(ei) = ~j~l, ek(j)" 

Hence we can associate to F (and also to f )  a partition P( f )  = {I/} of { 1,..., n} 
in s subsets. 
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The image of iuF will be (~)~= 1 i.(Si) where ei = i.(ei) are central idempotents of  
B and i.(Si) are K-simple subalgebras of OiBOi. 

Now let Fl ,  F2 ~ HOmAIg(K)(A ~)k K, B) corresponding to f l ,  f2 ~ HOmAIg(x)(A, B) 
have the following properties: 

(a) F1 (A ®k K) and F2(A ®k K) have the same simple components 

S S 

FI (A ®k K) = @ S i, F2(A ®k K) = @ S; 
i = l  i = l  

with Si = S/'= T/and identities of Si respectively Si', el respectively e/'. 
(b) The partitions P(fl), P(f2) defined by {~i} and {~} for the fixed {e ° } are the 

same. That means there are some regular u l, u2 e B such that 

i.,(ei) iu2(e~) ~ o = = ek(j). 
jzl, 

We can now apply the Noether-Skolem Theorem to the isomorphic K-subalgebras 
i.,(Si)=i.2(Si') included in the central simple K-algebra ~iBg'i, hence there exists 
some regular elements wi ~ ~iB~i with iwii., Fl IT, = i.2F2 [ r~. 

$ 
If w= ]~i=~ wi, we have iwi.,Fl =i.~F2, so F 1 and F2 are in the same orbit and by 

Lemma 1 so are f l  and fz- 
Note that the number  of nonisomorphic homomorphic images of A ® k K  is 

bounded by the number of ideals of A ®k K and hence is finite. Also the number 
of  partitions of { 1, ... ,  n} into s subsets is finite. Hence the number  of orbits of 
HOmAlg(x)(A, B) under the action of the group of all inner automorphisms of B is 
finite. [] 

Remark 1. One can estimate an upper bound for the number of orbits. Let n be the 
cardinal of a maximal set of primitive orthogonal idempotents of  B, let s be the 
number  of simple components of  A and t the number of simple components of  
A®gK.  Denote by N(r,n) the number of partitions of {1, . . . ,n} in exactly r 
subsets. 

It is clear that t_< [K: k]. s. 
For a fixed partition of {1, . . . ,n} in r<_t subsets the t central idempotents of 

A ®k K can be mapped in at most t ! / ( t -  r) ! ways to the r idempotents of  B defined 
by the partition, so an upper bound is 

t t! 
~' ( t -  r)T N(r, n). 

r = 0  

It means that there is a bound which depends only on n, s and [K: k]. 

Theorem 3. Let A be a semisimple algebra over a field k and B be a separable 
algebra over k. Then the number o f  orbits o f  HOmAlg(k)(A, B) under the action o f  
the group G o f  all inner automorphisms o f  B is finite. 
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Proof. One may write B=BIO) . . . (~B m with each B i a simple separable algebra 
over k and any f ~  HOmAlg(k)(A, B), may be written as a sum f = f l  +"" +fm where 
f /~  HOmAlg(k)(A, Bi). 

By Theorem 2 it follows that the number of orbits of HOmAlg(k)(A, Bi) under the 
action of the group G i of inner automorphism of B i is finite. Thus HOmAlg(k)(A, B) 
will have a finite number of orbits relatively to the action of G = G~ ×--- × Gn the 
group of all inner automorphisms of B. [] 

Remark 2. It follows by Remark 1 that the number of orbits is bouned by a constant 
depending only on dimk A and dimk B. 

We shall consider now the same problem for separable algebras over a henselian 
local ring. The conditions demanded are those necessary in order for the Noether- 
Skolem theorem to work (see [6], [9], [11] and [14]) and to be able to handle idem- 
potents in the center. We need the following preliminary results: 

Lemma 2. I f  R C S C A  are rings with S separable over R and commutative and A 
finitely generated and projective over R, then S is finitely generated and projective 
over R. I f  in addition R is semilocal, then S is semilocal. 

Proof. See [6, Lemma]. [] 

Noether-Skolem Theorem (for separable algebras over semilocal rings). Let R be 
a semilocal ring, let B be separable finitely generated projective R-algebra with 
center K, let A be a separable R-subalgebra o f  B with connected center C containing 
K and let tr be an R-algebra monomorphism o f  A into B leaving K fixed, then tr 
can be extended to an inner automorphism o f  B. 

Proof. See [6, Theorem 1.2]. [] 

Theorem 4. Let B be a projective separable algebra over a henselian local ring k with 
center K and let A be a projective separable algebra over k with center C. Then the 
number o f  orbits o f  HOmAlg(k)(A, B) under the action o f  the group G o f  all inner 
automorphisms o f  B is finite. 

Proof. Denote by 1~ the unique maximal ideal of k and let J~ = k/~. For any k-algebra 
homomorphism f :  A-~B define a K-algebra homomorphism F :  A ® k K - ~ B  by 
F(a®b)=f(a) .  b. Then F ( A ® g K ) = f ( A ) . K  is a K-subalgebra of B. We shall 
prove that for a splitting of A ®k K in a direct sum of separable algebras over some 
connected local rings containing K, some of  the components may vanish under the 
action of F while the restriction of F to the others will be an isomorphism; the 
Noether-Skolem theorem above can then be used in the same manner as in Theorem 
2. 
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By a result of Villamayor and Zelinsky (see [3, Ch. 2, Proposition 2.1]) both A 
and B are finitely generated as k-modules, hence notherian. It follows that K and 
C are also finitely generated over k, which is henselian. Hence both K and C we 
have decomposition as product of  henselian local rings. 

If K=K1 0 " "  OKm we have a decomposition B = B 10"'" OBm given by the or- 
thogonal idempotents of K and for f :  A ~ B  we can consider f / :  A ~ B  i such that 
f = f l  +"" +fro. It will be sufficient to prove that the number of orbits for each J~ 
is finite, so we can suppose that the center K of B is a henselian local ring and B 
is a primary ring (see also [4, Theorem 27]). 

From the decomposition of C = C 1 0 " "  O Cm in a sum of henselian local rings we 
can express A =A 1 0 " " O A m  each Ai being a separable k-algebra with center Ci. 
Then a s  A i is separable over k and projective, A i is separable over Ci and Ci 
separable over k (see [3, Theorem 2.3]) and by Lemma 2, Ci is projective over the 
local ring k hence free. 

Now as Ci is separable over k, Ci/~Ci is a separable algebra over k =  k/~ (cf. [9, 
Ch. 2, Theorem 7.1]), hence semisimple, so that ~Ci is the Jacobson radical of the 
local ring Ci. 

It follows that ~Ci is the unique maximal ideal of Ci or in the terminology of 
Azumaya [4], Cg is unramified over k. Using Lemma 5 and Theorem 28 of [4] it 
follows that 

C i = k[ag] = k[X]/(Pi(X)) 

where Pi(X) is a monic polynomial whose image Pi(X) in ~[X] is irrreducible and 

Ci = Ci/~Ci = ~'[¢~i]-  

We have Ci®k K= (~jK O, K C K  0 because 

Ci ®k K = k[X]/(Pi(X))® k K = K[X]/(Pi(X)) 

= @). K[XI/(Pij(X))= (~ Kij 
J J 

where Pij(X) are the factors corresponding to a decomposition into irreducible 
factors of the image Pi(X) of Pi(X) in •[X], g=K/~K.  

Notice that the separability implies that there are no repeated factors and the fac- 
tors can be lifted to K[X] as K is henselian. 

So we have K 0 = K[X]/(Po(X))=K[aij] and each Kq is a local (hence connected) 
henselian ring containing K. 

As Ci and K are separable over k, Ci®K and each Kij are k separable. 
We can now write: 

A ® k K =  A ®kK= @ (Ai®kK)= (~ (Ai®ciCi)®kK 
i=1 i=1 i=1 

: + ( A i ( ~ c i ( C i ( ~ k K ) ) : @ ) i  
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= (~ (Ai®c~Kij) = (~ A 0 
(i,j)~l (i,j)~l 

with each Ao=Ai®GKij a separable central K/y-algebra, because A®kK is 
separable central over C®kK by Proposition 1.5 of [3] and then use Proposition 
1.13 in Ch. 2 of [9]. 

In order to show that the restriction of F to A 0 (which is Azumaya algebra over 
Ko) is zero or a monomorphism, it is sufficient to show that the restriction of F to 

K o is zero or one-to-one (because the ideals of A 0 and K 0 are in bijective cor- 
respondence by extensions and restriction, Corollary 3.2 of [3]). 

Suppose now that F IK0 ~ 0; remember that F is a K-algebra homomorphism and 

notice that both K 0 = K[ao] = K[X]/(Pij(X)) and F(Ki:) are separable k-algebras 
(use Proposition 1.4 of [3]). Then by Lemma 2, Kiy and F(Ko) are projective, hence 
free over k. Both K 0 and F(Ko) are henselian local rings and separability implies 
(as we already proved for C~ over k) that they are unramified over k. As our rings 

are unramifed and free over k and have isomorphic residue fields, we can use again 

Lemma 5 of [4] to deduce that if F(Kij) is not 0, then K 0 and F(Kij) are isomorphic. 
It follows that F(A®kK)=(~.j)~LA~, LCI with A~ K-isomorphic to Ai/, 

hence A~ are K-separable with connected center K o containing K. Denoting by el~ 
the identity element of A U one has ~c~j)~L e0 = IB. 

Now using well known results on idempotents (see [4, Theorems 24 and 25]) there 
0 exists a system of orthogonal idempotents of B, {e °, ..., e~ } (which comes from a 

system of orthogonal idempotents of the simple k-algebra BlaB) such that con- 
jugates of e 0 by a regular element u ~ B are sums of e°'s. 

Denoting by i~ the inner automorphism i~(x)=uxu -1 we have 

~ o : i , ( e o ) :  ~ e °. 
i ~ L  0 

It follows that f defines a partition {Lij} of {1, . . . ,n}.  
Suppose now that for two homomorphisms f l , f 2 ~  HOmAlg(k)(A, B) we have: 
(a) The same components in the decomposition of FI (,4 ®k K) and F2(A ®k K) 

vanish; that is: 

FI(A®kK)= ® F2(AQkK)= ® 
( i , j ) ~ L  ( i , j ) ~ L  

t 
where Aij = Fl (Aij) = A  0 = F2(Aij) as K-algebras. 

(b) The corresponding idempotents {e~j},{e~} give the same partition of 
{ 1,..., n} that is there are regular elements ul, u2 ~B such that iu~(e'ij)= iu2(ei~)= e'~j. 

Then iu,Fl(Aij),iu2FE(Aij) are isomorphic K-subalgebras of ~ijB~ij, so we can use 
the Noether-Skolem theorem for separable algebras over local rings to find regular 

elements Wij E ~ijBe.ij such that iwoiutF 1 [Ao = iu2F2 [Ao" 
Then for w = ~ w 0 one has iwiu,F 1 = iu2F2, so F 1 and F 2 are in the same orbit 

and so are f l  and f2 under the action of the group of all inner automorphisms of B. 
But there are a finite number of choices for vanishing components in (a) and for 

partitions of {1, ..., n} in (b), hence the number of orbits is finite. [] 
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In a forthcoming paper [12] as applications of the above results we shall determine 
the structure of some classes of artinian rings. For these applications the following 
results will be useful. 

Theorem 5. Let A be a semisimple k-algebra such that each component o f  the center 
o f  A is a Galois extension o f  k. 

I f  f :  A--~gm(a) is a k-algebra homomorphism, then f is conjugate under an in- 
ner automorphism of  gm(A ) tO a diagonal mapping diag(gl, . . .  ,gin), each gi being 
a k-endomorphism o f  A. 

Proof. Since A is a direct product of  simple rings if is enough to prove the theorem 
for a simple ring A =Mm(D) where D is a division algebra. Now, if {eijl 1 <_i,j<_ n} 
is a system of matrix units in A, then {f(eij)}~ j is a system of matrix units and f (D)  
is included in the centralizer of {f(eij)} which is isomorphic to Mm(D), by an inner 
conjugation of Mm(A). Therefore, the problem can be reduced to the case when A 
is a division algebra D. 

Since K is a Galois extension of k, we have decompositions 

K®k K= ~ eaK and D®k K= ~ (D®e~K) 
a ~ Gal(K/k)  tr ~ Gal(K/k)  

given by the orthogonal idempotents {ea}aeGal(K/k). Denoting ~a=f(ea), if {e °} is 
a system of matrix units in Mm(D), then we can find as in the proof of Theorem 

0 Hence, iuf  is a diagonal 2 an inner conjugation iu such that iu($a) = ~,i~loeii. 
mapping. [] 

Notice that if A is a simple algebra, each gi is a k-automorphism of A. 
Let p be a prime number, A a separable k-algebra over a field k of characteristic 

p and Wn(k) the truncated p-adic ring of residue field k. We shall denote by Wn(A) 
the unique separable Wn(k)-algebra of characteristic pn and residual algebra 
modulo its Jacobson radical J(Wn(A))=PWn(A) equal to A (see [4, Theorem 32] 
and [13, Theorem 1]). Denote also W~,(A)=lirn Wn(A ). 

Theorem 6. Let A be a separable k-algebra such that each component o f  the center 
o f  A is a Galois extension o f  k. 

I f  f :  Wn(A)~Mm(Wn(A)) is a Wn(k)-algebra homomorphism, (n ~ N or n = oo), 
then f is conjugate under an inner automorphism o f  Mm(Wn(A)) to a diagonal 
mapping d i a g ( g  1, . . .  ,gin), where each gi is a Wn(k) endomorphism o f  Wn(A). 

The proof is similar to that of Theorem 5. 
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